

## ECS455: Chapter 5 OFDM

5.4 Cyclic Prefix (CP)



Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:
BKD 3601-7
Tuesday 9:30-10:30
Tuesday 13:30-14:30
Thursday 13:30-14:30

## Three steps towards modern OFDM

1. Mitigate Multipath (ISI): Decrease the rate of the original data stream via multicarrier modulation (FDM)
2. Gain Spectral Efficiency: Utilize orthogonality
3. Achieve Efficient Implementation: FFT and IFFT

- Extra step: Completely eliminate ISI and ICI
- Cyclic prefix


## Cyclic Prefix: Motivation (1)

- Recall: Multipath Fading and Delay Spread


Transmitted
Signal

## Cyclic Prefix: Motivation (2)

- OFDM uses large symbol duration $T_{s}$
- compared to the duration of the impulse response $\tau_{\max }$ of the channel
- to reduce the amount of ISI
- Q: Can we "eliminate" the multipath (ISI) problem?
- A:To reduce the ISI, add guard interval larger than that of the estimated delay spread.
- If the guard interval is left empty, the orthogonality of the sub-carriers no longer holds, i.e., ICI (inter-channel interference) still exists.
- Solution: To prevent both the ISI as well as the ICI, OFDM symbol is cyclically extended into the guard interval.


## Cyclic Prefix



Guard Interval, $\mathrm{T}_{\mathrm{CP}}>\tau_{\max }$ Using empty spaces as guard interval at the beginning of each symbol


End of symbol is prepended to beginning Guard interval still equals to $T_{C P}$

Using cyclic prefix:
OFDM symbol length: $T_{\text {sym }}+T_{\text {cp }}$
Efficiency: $T_{\mathrm{sym}} /\left(\mathrm{T}_{\mathrm{sym}}+\mathrm{T}_{\mathrm{cp}}\right)$

## Recall: Convolution



## Circular Convolution

(Regular Convolution)


Replicate $x$ (now it looks periodic) Then, perform the usual convolution only on $\mathrm{n}=0$ to $\mathrm{N}-1$


Circular Convolution: Examples 1
Find

(1) $1 \begin{array}{lll}1 & 2\end{array}$


## Discussion

- Regular convolution of an $\mathrm{N}_{1}-$ point vector and an $\mathrm{N}_{2}-$ point vector gives $\left(\mathrm{N}_{1}+\mathrm{N}_{2}-1\right)$-point vector.
- Circular convolution is performed between two equallength vectors. The results also has the same length.
- Circular convolution can be used to find regular convolution by zero-padding.
- Zero-pad the vectors so that their length is $\mathrm{N}_{1}+\mathrm{N}_{2}-1$.
- Example:

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 0 & 0
\end{array}\right] \circledast\left[\begin{array}{lllll}
4 & 5 & 6 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] *\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]
$$

- In modern OFDM, we want to perform circular convolution via regular convolution.


## Circular Convolution in Communication

- We want the receiver to obtain the circular convolution of the signal (channel input) and the channel.
- Q:Why?
- A:
- CTFT: convolution in time domain corresponds to multiplication in frequency domain.
- This fact does not hold for DFT.
- DFT: circular convolution in (discrete) time domain corresponds to multiplication in (discrete) frequency domain.
- We want to have multiplication in frequency domain.
- So, we want circular convolution and not the regular convolution.
- Problem: Real channel does regular convolution.
- Solution: With cyclic prefix, regular convolution can be used to create circular convolution.


## Example 2

$$
\left[\begin{array}{lllll}
1 & -2 & 3 & 1 & 2
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]=?
$$

Solution:
路
$\begin{array}{ccccccccccccccc}1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 1 & -2 & 3 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 & & & & & & & & & \\ & 0 & 0 & 1 & 2 & 3 & & & & & & & & \\ & & & 0 & 0 & 1 & 2 & 3 & & & & & & & \\ & & & & 0 & 0 & 1 & 2 & 3 & & & & & & \\ & & & & 0 & 0 & 1 & 2 & 3 & & & & & \end{array}$

$$
\left[\begin{array}{lllll}
1 & -2 & 3 & 1 & 2
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
8 & -2 & 6 & 7 & 11
\end{array}\right]
$$



## Example 2

Try this: use only the necessary part of the replica and then convolute with the channel.

```
[1
```

Copy the last $v$ samples of the symbols at the beginning of the symbol. This partial replica is called the cyclic prefix.

```
1 2 3
    1 2 3
        1 2 3
            1 2 3
            1 2 3
            1 2 3
            1 2 3
                1 2
                3
            1 2 3
```

$\left.\begin{array}{r}1 \times 3=3 \\ 1 \times 2+2 \times 3=2+6=8 \\ 1 \times 1+2 \times 2+1 \times 3=1+4+3=8 \\ 2 \times 1+1 \times 2+(-2) \times 3=2+2-6=-2 \\ 1 \times 1+(-2) \times 2+3 \times 3=1-4+9=6 \\ (-2) \times 1+3 \times 2+1 \times 3=-2+6+3=7 \\ 3 \times 1+1 \times 2+2 \times 3=3+2+6=11 \\ 1 \times 1+2 \times 2=1+4=5 \\ 2 \times 1==\end{array}\right\}$

## Example 2

- We now know that
$\left[\begin{array}{lllllll}1 & 2 & 1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2\end{array}\right]$
Cyclic Prefix

$$
\left[\begin{array}{lllll}
1 & -2 & 3 & 1 & 2
\end{array}\right] \circledast\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 0
\end{array}\right]
$$

- Similarly, you may check that

$$
\left[\begin{array}{l}
\underbrace{-2}_{\text {Cyclic Prefix }} \\
\hline
\end{array} 2 \begin{array}{lllll}
2 & 1 & -3 & -2 & 1
\end{array}\right] *\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{lllllll}
-6 & -1 & \underbrace{6}_{6} 8 & -5 & -11 & -4 & 0
\end{array} 1\right]
$$

## Example 3

- We know, from Example 2, that
[ $\left.1 \begin{array}{llllll}1 & 2 & -2 & 3 & 1 & 2\end{array}\right]$ [ $\left.\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{llllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5\end{array}\right]$
And that
$\left[\begin{array}{lllllll}-2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right] *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}-6 & -1 & 6 & 8 & -5 & -11 & -4 & 0 & 1\end{array}\right]$
- Check that

$$
\left.\begin{array}{rl} 
& {\left[\begin{array}{cccccccccccccc} 
& 1 & 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & {\left[\begin{array}{llllllll}
3 & 8 & 8 & -2 & 6 & 7 & 11 & 5
\end{array}\right.} & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& \text { and }
\end{array}\right]
$$

## Example 4

- We know that
$\left[\begin{array}{llllll}1 & 2 & 1 & -2 & 3 & 1\end{array}\right]$ * $\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{lllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & 5 & 2\end{array}\right]$
$\left[\begin{array}{lllllll}-2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right]$ * $\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=\left[\begin{array}{llllllll}-6 & -1 & 6 & 8 & -5 & -11 & -4 & 0\end{array}\right]$
- Using Example 3, we have

$\left.=\left(\begin{array}{rrrrrrrrrrrrrr}{[ } & 1 & 2 & 1 & -2 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ +\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array} 0\right. & 0 & -2 & 1 & 2 & 1 & -3 & -2 & 1\end{array}\right]\right) *\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
$\left.=\begin{array}{rrrrrrrrrrrrrrrr}{\left[\begin{array}{lllllllll}\mathbf{3} & \mathbf{8} & 8 & -2 & 6 & 7 & 11 & \mathbf{5} & \mathbf{2} \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]} \\ \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & -\mathbf{6} & -\mathbf{1} & 6 & 8 & -5 & -11 & -4 & \mathbf{0} & \mathbf{1}\end{array}\right]$
$=\left[\begin{array}{lllllllllllllll}3 & 8 & 8 & -2 & 6 & 7 & 11 & \mathbf{- 1} & \mathbf{1} & 6 & 8 & -5 & -11 & -4 & \mathbf{0} \\ \mathbf{1}\end{array}\right]$


## Putting results together

- Suppose $\underline{x}^{(1)}=\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right]$ and $\underline{x}^{(2)}=\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right]$
- Suppose $\underline{h}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
- At the receiver, we want to get
- $\left[\begin{array}{lllll}1 & -2 & 3 & 1 & 2\end{array}\right] *\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}8 & -2 & 6 & 7 & 11\end{array}\right]$
- $\left[\begin{array}{lllll}2 & 1 & -3 & -2 & 1\end{array}\right] *\left[\begin{array}{lllll}3 & 2 & 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lllll}6 & 8 & -5 & -11 & -4\end{array}\right]$
- We transmit [ $\left.\begin{array}{lllllllllll}\begin{array}{llllll}1 & 2 \\ \text { Cyclic prefix }\end{array} & \mathbf{- 2} & 3 & 1 & 2 & -\underbrace{2}_{\text {Cyclic prefix }} & 1 & 2 & 1 & -3 & -2 \\ 1\end{array}\right]$.
- At the receiver, we get



## Circular Convolution: Key Properties

- Consider an $N$-point signal $x[n]$
- Cyclic Prefix (CP) insertion: If $x[n]$ is extended by copying the last $v$ samples of the symbols at the beginning of the symbol:

$$
\hat{x}[n]= \begin{cases}x[n], & 0 \leq n \leq N-1 \\ x[n+N], & -v \leq n \leq-1\end{cases}
$$

- Key Property 1:

$$
\{h \circledast x\}[n]=(h * \widehat{x})[n] \text { for } 0 \leq n \leq N-1
$$

- Key Property 2:

$$
\{h \circledast x\}[n] \xrightarrow{\mathrm{FFT}} H_{k} X_{k}
$$

$$
\begin{aligned}
\mathbf{h}= & (h[0], h[1], h[2], \ldots h[v]) \quad \mathbf{H}=\mathrm{FFT}(\tilde{\mathbf{h}}) \\
& \text { OFDM with CP for Channel W/ Memory }
\end{aligned}
$$

- To send $N$ samples $\mathbf{S}=\left(S_{0}, S_{1}, \ldots, S_{N-1}\right)$
- First apply IFFT with scaling by $\sqrt{N}: \tilde{\mathbf{s}}=\sqrt{N} \operatorname{IFFT}(\mathbf{S})$
- Then, add cyclic prefix

$$
\mathbf{x}=[\tilde{s}[N-v], \ldots, \tilde{s}[N-1], \tilde{s}[0], \ldots, \tilde{s}[N-1]]
$$

- This is inputted to the channel
- The channel output is $\mathbf{y}=\mathbf{x}$ * $\mathbf{h}$ which can be viewed as

$$
\mathbf{y}=[p[N-v], \ldots, p[N-1], r[0], \ldots, r[N-1]]
$$

- Remove cyclic prefix to get r . (We know that $\mathbf{r}=\tilde{\mathbf{s}} \circledast \mathbf{h}$.)
- Then apply FFT with scaling by $1 / \sqrt{N}: ~: \tilde{R}=\frac{1}{\sqrt{N}}$ FFT(r)
- By circular convolution property of DFT,
$\mathbf{r}=\tilde{\mathbf{s}} \circledast \mathbf{h}$

$$
R_{k}=H_{k} \tilde{S}_{k} \longrightarrow \tilde{R}_{k}=H_{k} S_{k} \longmapsto S_{k}=\frac{\tilde{R}_{k}}{H_{k}}
$$

## MATLAB Example (1/2)

```
S=[\begin{array}{lllll}{1}&{-1}&{2}&{4}&{5}\end{array}-1
h = [lllll
% OFDM transmitter
N = 4; % Number of data symbols per OFDM symbol
n = length(S)/N;
St = (reshape(S,N,n)).';
st = (sqrt(N))*ifft(St,[],2);
% Number of data blocks
% Reshape stream to matrix for
% easier addition of cyclic prefix
% Calculate the IFFT with scaling
St = \begin{tabular}{rrrr|}
\hline 1 & -1 & 2 & 4 \\
5 & -1 & 2 & -3 \\
\hline
\end{tabular}
\(\mathrm{v}=\) length \((\mathrm{h})-1\);
xt = [st(:,(N-(v-1)):N) st]; \% Add Cyclic Prefix
x = (reshape(xt.',((N+v)*n),1)).'; \% Reshape back to stream
\[
x=
\]
\[
\begin{array}{ccccccc}
0.0+0.0 i & -0.5+2.5 i & 3.0+0.0 i & -0.5-2.5 i & 0.0+0.0 i & -0.5+2.5 i & 5.5+0.0 i \\
5+1.0 i & 1.5-0.0 i & 1.0 i & 1.5+0.0 i \\
\hline
\end{array}
\]
\(1.5+1.0 i \quad 5.5+0.0 i \quad 1.5-1.0 i\)
```


## MATLAB Example (2/2)

\%-
\% Convolve with channel
$y=\operatorname{conv}(x, h)$;
H = fft([h zeros(1,N-v-1)]);
\%-
\% OFDM receiver
$y=y(1:((N+v) * n))$;
yt $=$ reshape( $y,(N+v), n) . ' ;$
$r=y t(:, v+1: v+N) ;$
Rt $=(1 / \operatorname{sqrt}(N)) * f f t(r,[], 2)$;


```
y =
    \0.00+0.00i -0.50+2.50i 2. 2.85 + 0.75i 
6.10 + 0.30i 3.30-0.90
```

```
    % Reshape matrix for easier
    % removal of cyclic prefix
    % Eliminate junk (cyclic prefix)
    % Calculate the FFT with scaling
```

$\xrightarrow[\text { w/ scaling }]{\text { FFT }}$
Rt $=$
$1.4+0.0 \mathrm{i}-0.9+0.3 \mathrm{i} \quad 1.6+0.0 \mathrm{i} \quad 3.6+1.2 \mathrm{i}$
\% "Equalization"
S_hatt = zeros(size(Rt));
for $i=1: l e n g t h(H)$
S_hatt(:,i) = Rt(:,i)/H(i);
end
S_hat $=$ reshape(S_hatt.',1,N*n)


```
S_hat =[[\begin{array}{lllllllll}{1}&{-1}&{2}&{4}&{5}&{-1}&{2}&{-3}\end{array}]
```


## OFDM System Design: CP

- A good ratio between the CP interval and symbol duration should be found, so that all multipaths are resolved and not significant amount of energy is lost due to CP.
- As a thumb rule, the CP interval must be two to four times larger than the root mean square (RMS) delay spread.



## Summary

- The CP at the beginning of each block has two main functions.
- As guard interval, it prevents contamination of a block by ISI from the previous block.
- It makes the received block appear to be periodic of period $N$.
- Turn regular convolution into circular convolution
- Point-wise multiplication in the frequency domain


## Reference

- A. Bahai, B. R. Saltzberg, and M. Ergen, Multi-Carrier Digital Communications:Theory and Applications of OFDM, 2nd ed., New York: Springer Verlag, 2004.


